Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 4: 1025086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532611

RESUMO

Poor lifestyle leads potentially to chronic diseases and low-grade physical and mental fitness. However, ahead of time, we can measure and analyze multiple aspects of physical and mental health, such as body parameters, health risk factors, degrees of motivation, and the overall willingness to change the current lifestyle. In conjunction with data representing human brain activity, we can obtain and identify human health problems resulting from a long-term lifestyle more precisely and, where appropriate, improve the quality and length of human life. Currently, brain and physical health-related data are not commonly collected and evaluated together. However, doing that is supposed to be an interesting and viable concept, especially when followed by a more detailed definition and description of their whole processing lifecycle. Moreover, when best practices are used to store, annotate, analyze, and evaluate such data collections, the necessary infrastructure development and more intense cooperation among scientific teams and laboratories are facilitated. This approach also improves the reproducibility of experimental work. As a result, large collections of physical and brain health-related data could provide a robust basis for better interpretation of a person's overall health. This work aims to overview and reflect some best practices used within global communities to ensure the reproducibility of experiments, collected datasets and related workflows. These best practices concern, e.g., data lifecycle models, FAIR principles, and definitions and implementations of terminologies and ontologies. Then, an example of how an automated workflow system could be created to support the collection, annotation, storage, analysis, and publication of findings is shown. The Body in Numbers pilot system, also utilizing software engineering best practices, was developed to implement the concept of such an automated workflow system. It is unique just due to the combination of the processing and evaluation of physical and brain (electrophysiological) data. Its implementation is explored in greater detail, and opportunities to use the gained findings and results throughout various application domains are discussed.

3.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506383

RESUMO

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Assuntos
Neurociências , Reprodutibilidade dos Testes
4.
Data Brief ; 17: 469-511, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876420

RESUMO

Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health) to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions.

5.
Front Neuroinform ; 11: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428750

RESUMO

PURPOSE: The purpose of this study is to investigate the feasibility of applying openEHR (an archetype-based approach for electronic health records representation) to modeling data stored in EEGBase, a portal for experimental electroencephalography/event-related potential (EEG/ERP) data management. The study evaluates re-usage of existing openEHR archetypes and proposes a set of new archetypes together with the openEHR templates covering the domain. The main goals of the study are to (i) link existing EEGBase data/metadata and openEHR archetype structures and (ii) propose a new openEHR archetype set describing the EEG/ERP domain since this set of archetypes currently does not exist in public repositories. METHODS: The main methodology is based on the determination of the concepts obtained from EEGBase experimental data and metadata that are expressible structurally by the openEHR reference model and semantically by openEHR archetypes. In addition, templates as the third openEHR resource allow us to define constraints over archetypes. Clinical Knowledge Manager (CKM), a public openEHR archetype repository, was searched for the archetypes matching the determined concepts. According to the search results, the archetypes already existing in CKM were applied and the archetypes not existing in the CKM were newly developed. openEHR archetypes support linkage to external terminologies. To increase semantic interoperability of the new archetypes, binding with the existing odML electrophysiological terminology was assured. Further, to increase structural interoperability, also other current solutions besides EEGBase were considered during the development phase. Finally, a set of templates using the selected archetypes was created to meet EEGBase requirements. RESULTS: A set of eleven archetypes that encompassed the domain of experimental EEG/ERP measurements were identified. Of these, six were reused without changes, one was extended, and four were newly created. All archetypes were arranged in the templates reflecting the EEGBase metadata structure. A mechanism of odML terminology referencing was proposed to assure semantic interoperability of the archetypes. The openEHR approach was found to be useful not only for clinical purposes but also for experimental data modeling.

6.
Gigascience ; 6(4): 1-6, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327918

RESUMO

Background: Developmental coordination disorder (DCD) is described as a motor skill disorder characterized by a marked impairment in the development of motor coordination abilities that significantly interferes with performance of daily activities and/or academic achievement. Since some electrophysiological studies suggest differences between children with/without motor development problems, we prepared an experimental protocol and performed electrophysiological experiments with the aim of making a step toward a possible diagnosis of this disorder using the event-related potentials (ERP) technique. The second aim is to properly annotate the obtained raw data with relevant metadata and promote their long-term sustainability. Results: The data from 32 school children (16 with possible DCD and 16 in the control group) were collected. Each dataset contains raw electroencephalography (EEG) data in the BrainVision format and provides sufficient metadata (such as age, gender, results of the motor test, and hearing thresholds) to allow other researchers to perform analysis. For each experiment, the percentage of ERP trials damaged by blinking artifacts was estimated. Furthermore, ERP trials were averaged across different participants and conditions, and the resulting plots are included in the manuscript. This should help researchers to estimate the usability of individual datasets for analysis. Conclusions: The aim of the whole project is to find out if it is possible to make any conclusions about DCD from EEG data obtained. For the purpose of further analysis, the data were collected and annotated respecting the current outcomes of the International Neuroinformatics Coordinating Facility Program on Standards for Data Sharing, the Task Force on Electrophysiology, and the group developing the Ontology for Experimental Neurophysiology. The data with metadata are stored in the EEG/ERP Portal.


Assuntos
Transtornos das Habilidades Motoras/diagnóstico , Estimulação Acústica , Criança , Comorbidade , Simulação por Computador , Curadoria de Dados , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Estimulação Luminosa , Característica Quantitativa Herdável , Tempo de Reação , Reprodutibilidade dos Testes , Software
7.
Data Brief ; 15: 851-861, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29379849

RESUMO

Sentiment extraction and analysis using spoken utterances or written corpora as well as collection and analysis of human heart rate data using sensors are commonly used techniques and methods. On the other hand, these have been not combined yet. The collected data can be used e.g. to investigate the mutual dependence of human physical and emotional activity. The paper describes the procedure of parallel acquisition of heart rate sensor data and tweets expressing sentiment and difficulties related to this procedure. The obtained datasets are described in detail and further discussed to provide as much information as possible for subsequent analyses and conclusions. Analyses and conclusions are not included in this paper. The presented experiment and provided datasets serve as the first basis for further studies where all four presented data sources can be used independently, combined in a reasonable way or used all together. For instance, when the data is used all together, performing studies comparing human sensor data, acquired noninvasively from the surface of the human body and considered as more objective, and human written data expressing the sentiment, which is at least partly cognitively interpreted and thus considered as more subjective, could be beneficial.

8.
Front Neuroinform ; 9: 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25762923

RESUMO

The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.

9.
Front Neuroinform ; 8: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24639646

RESUMO

As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

10.
Gigascience ; 3(1): 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25671095

RESUMO

BACKGROUND: The event-related potentials technique is widely used in cognitive neuroscience research. The P300 waveform has been explored in many research articles because of its wide applications, such as lie detection or brain-computer interfaces (BCI). However, very few datasets are publicly available. Therefore, most researchers use only their private datasets for their analysis. This leads to minimally comparable results, particularly in brain-computer research interfaces. Here we present electroencephalography/event-related potentials (EEG/ERP) data. The data were obtained from 20 healthy subjects and was acquired using an odd-ball hardware stimulator. The visual stimulation was based on a three-stimulus paradigm and included target, non-target and distracter stimuli. The data and collected metadata are shared in the EEG/ERP Portal. FINDINGS: The paper also describes the process and validation results of the presented data. The data were validated using two different methods. The first method evaluated the data by measuring the percentage of artifacts. The second method tested if the expectation of the experimental results was fulfilled (i.e., if the target trials contained the P300 component). The validation proved that most datasets were suitable for subsequent analysis. CONCLUSIONS: The presented datasets together with their metadata provide researchers with an opportunity to study the P300 component from different perspectives. Furthermore, they can be used for BCI research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...